他直言,大模型推进速度越来越快,必须强调模型算力效率。“大家可以想象,效率越高就意味着在单位算力投入相等的情况下获得的精度回报越高,它对于训练和应用都非常有利。”
从浪潮信息发布的“源2.0-M32”开源大模型来看,其基于“源2.0”系列大模型已有工作基础,创新提出和采用了“基于注意力机制的门控网络”技术,构建包含32个专家(Expert)的混合专家模型(MoE),并大幅提升了模型算力效率,模型运行时激活参数为37亿,在业界主流基准评测中性能全面对标700亿参数的LLaMA3开源大模型。
对大模型推理成本的优化,可通过很多技术手段实现。首先是模型本身,模型结构、训练方法都可以持续改进,包括业界很关注的MoE(混合专家模型),就是优化推理成本很好的解决方案。其次是工程上的优化。大模型的调用量越大,优化推理成本的空间也越大。以前的模型都是单机推理,大模型用的是分布式推理。所以如果能把各种各样底层算力用得更好,推理成本就会大大降低。
家人之间为何这样很慢有业界技术团队测算,若要对一个5000亿参数规模的单体大模型进行充分训练,所需算力基础设施约在10亿美元规模,每年消耗的电费在5.3亿元人民币。无论对于哪个机构、企业,这都是天文数字和巨大代价,中国也不例外。
MoE大模型的盛行,实际上对应的正是模型能力和算力开销两大问题的解决。这也是为何众多大模型厂商如OpenAI、谷歌、Mistral AI、浪潮信息等陆续基于MoE架构升级自家大模型产品的原因。
浪潮信息人工智能首席科学家吴韶华在接受中新网记者采访时说,我们一直在想如何以更低的算力消耗,提高整个大模型的应用效果,能让企业、机构以更小的算力代价去获得更高的模型能力。“这可能是中国发展自己的AI大模型比较行之有效的路径。”
他进一步称,整体来看,尽管当前模型的能力提升非常之快,但之前大家更多关注单个维度问题,即平均精度的提升。但大模型进入快速落地时代,就不得不考虑更多维度的问题,包括模算效率、精度、算力开销等。
“现实的算力是有限的,我们一再反复强调模算效率,试图针对当前算力情况闯出一条自己觉得比较好的路子。在固定每个Token算力不变的情况下,通过扩展专家数量可以获得更大参数量的模型,进而获得更高精度。”吴韶华说。
知名科学杂志《Nature》此前发表了一篇关于大模型未来发展之路的文章,《In Al, is bigger always better?》(人工智能,越大型越好?)。争议的出现,意味着AI发展方向出现了分歧。
中国工程院院士郑纬民曾做过这样的计算,在大模型训练过程中,70%开销要花在算力上;推理过程中95%的花费也是在算力上。
郑纬民表示,现有14个国家挂牌的超算系统,每台机器的建设成本都很高,成本在10亿元至20亿元,甚至更高。这些超算系统已经为中国的国民经济发展作出巨大贡献,但有些系统还有空余算力,这些空余算力也可被用来做大模型训练,且经过优化甚至可降低大模型训练成本。
家人之间为何这样很慢在哪下载安装?家人之间为何这样很慢好用吗?
作者: 张家口 ♃
网友评论更多
81 双河o
五方面力量推动A股五月开门红,外资看多做多,资金面主导修复行情继续☳☴
2025-06-15 00:00:52 推荐
187****7627 回复 184****2928 :收评:港股恒指涨0.55% 恒生科指涨0.92% 石墨、高铁概念股强劲☵ 来自可克达拉
187****2277 回复 184****3924 :出售用户信息 美国四大电信巨头被罚☶ 来自昆玉
157****3040 :按最下面的历史版本☷☸ 来自胡杨河
24 石家庄656
5年赚了32亿,“擦边球之王”敷尔佳的套路,瞒不住了☹☺
2025-06-16 01:09:56 推荐
永久VIP :极米科技营收净利下滑扣非降超八成 股价跌逾80%第二大股东百度再减持☻ 来自唐山
158****5314 :机构预测:今年全球汽油需求增速将减半,因电动汽车激增☼ 来自秦皇岛
158****9444 回复 666☽ :京东方A下游需求提前释放首季赚近10亿 逾2万人研发有效专利4万件夯实技术底座☾ 来自邯郸
14 邢台ed
浙江医药上涨5.02% 券商给予买入建议☿♀
2025-06-16 12:10:30 不推荐
保定cl :纽约大学终身教授陈溪:巴菲特并非不懂AI,只是要赚自己认知内的钱♁
186****1651 回复 159****4820 :港股本周要闻前瞻:中芯国际等公司将公布业绩 国内一系列重磅宏观数据出炉♂